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Résumé

This paper synthetically presents a reliable and generic way to evaluate
the difficulty of video games, and an experiment testing its accuracy and
concordance with subjective assessments of difficulty. We propose a way
to split the gameplay into measurable items, and to take into account
the player’s apprenticeship to statistically evaluate the game’s difficulty.
We then present the experiment, based on a standard FPS gameplay.
First, we verify that our constructive approach can be applied to this
gameplay. Then, we test the accuracy of our method. Finally, we compare
subjective assessments of the game’s difficulty, both from the designers and
the players, to the values predicted by our model. Results show that a very
simple version of our model can predict the probability to the player has
to lose with enough accuracy to be useful as a game design tool. However,
the study points out that the subjective feeling of difficulty seems to be
complex, and not only based on a short term estimate of the chances of
success.
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1 Difficulty is part of the fun

Difficulty scaling is one of the most fundamental issues of game design [4] [1].
As Bernard Suits puts it, ”playing a game is the voluntary attempt to overcome
unnecessary obstacles” [19]. Difficulty scaling is indeed about properly setting
up these obstacles. Scaling the difficulty of the player’s goals, and precisely
setting the pacing of difficulty all along the game, is thus a crucial part of game
design. A good game design provides the right difficulty slope (Fig. 1) [17],[5].

Figure 1 – Difficulty and learning curves.

Numerous works in cognitive psychology and game design theory try to
explain the relation between the player’s enjoyment and diverse characteristics
of the game he is playing. Thomas Malone describes video games enjoyment
as stemming from the levels of challenge, curiosity and fantasy [15] [16]. The
level of challenge is directly related to the game’s difficulty. Yanakakis et al have
reported many experiments confirming Malone’s model [22], [23]. Nicole Lazzaro
associates fun with, among others, the Hard Fun dimension, also relating to
overcoming difficult tasks [12]. Ryan et al apply their self-determination theory
to video games and show how enjoyment is related to the feeling of competence,
and thus, to the game’s difficulty [18]. Voerderer et al show that competition is
linked to video game enjoyment [21]. Sweetser et al see challenge as one of the
most important part of their Game Flow framework [20]. All these works clearly
point difficulty as one of the core components of fun in video games.

Psychology also helps us to understand the way difficulty is linked with
player’s enjoyment. The most widely known work in this domain, Mihaly Csiks-
zentmihalyi’s theory of flow, clearly states that the difficulty of a task has to be
just at the right spot, so that the player feels totally engaged [6]. The player may
feel bored if the task is too easy, or anxious if it’s too hard. But the link between
difficulty and pleasure might be more complex, especially when dealing with the
variations of difficulty during the whole player’s experience. Klimmt et al’s work
shows that at the beginning, players tend to like a lower level of difficulty [10].
Loftus et al made a judicious comparison between reinforcement schedules and
video games, leading to think that variations in the difficulty level would make
the game more enjoyable [14]. Indeed, if the player has to deal with both success
and failure and is not able to predict whether he will succeed or not, then he’s on
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a partial reinforcement schedule, which induces the strongest motivation. They
also explain that to maximize the player’s motivation, we should maximize his
regret. Regret is the highest when the player has almost succeeded but did not,
and thus when the challenge difficulty is slightly higher than the player’s current
level. We discuss and further examine these relationships between difficulty and
cognitive models in [13], but from this short summary, we can see that there
exists many complex relationships between the game’s difficulty slope and the
player’s enjoyment and motivation.

These works clearly show that difficulty scaling is important, but moreover,
that much can be done to motivate the player when precisely crafting the game’s
difficulty slope and not just coarsely adjusting it. However, there is still lack of
a precise definition of difficulty as a measurable parameter. Difficulty scaling is
mainly a heuristic and iterative process that game designers handle intuitively.
We want to help them in this task by proposing a theoretical, out-of-a-specific-
context model to measure a video game’s difficulty.

It is important to point out that we do not propose a psycho-cognitive model
of video game playing’s difficulty. Our approach is bottom-up : we do not start
from the player cognitive models but from game design practices. Our goal is to
provide a way to compare the difficulty curve forecast by the level designer and
the observed one, to compare the progression of difficulty in several games and
to analyse scientifically the relationships between the player’s engagement and
the level of difficulty. We consider that any gameplay can be split up into atoms
[11]. We then consider that game and level designers build many successive
playing contexts, or challenges, using these atoms. Each challenge proposes a
specific goal the player has to attain [5]. In challenges, the designer combines
and tunes these atoms to scale the difficulty. The resulting may ask different
kind of effort to the player, which we categorize as sensitive, logical or motor
[13]. Sensitive difficulty corresponds for example to make useful game objects
hard to find by the player. Logical difficulty forces the player to make complex
inferences to determine his next move. Motor difficulty stems from the time
and space constraints of each player’s action. But whichever kind of difficulty
the challenge is based on, we consider that the designer manipulates the player
chances of success. Of course, game design is more than just preparing success
or failure [9]. Nevertheless, the probability of success is the principal and most
observable aspect of difficulty. We thus base our evaluation of difficulty on this
parameter.

We thus take the designer’s constructive approach to build our model. We
start by identifying the core mechanics the player will learn to master, and
use them to build a player model. We then try to find the link between this
player model and the probability the player has to reach the successive goals
of the game. We already detailed this approach in a previous work [2] [3], and
synthetically present it in the next section, before the case study. In the next
sections, we evaluate our model within an experiment : is it accurate enough,
and does it correspond to the subjective assessment of difficulty by players ?
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2 Challenges and abilities

To measure a video game’s difficulty, we first propose to decompose the whole
gameplay into a follow-up of challenges. This follow-up might be dynamically
generated by an emergent gameplay or statically designed as a network of quests
in a more scripted kind of gameplay [8]. Nevertheless, playing always implies
being attached to a result, if we rely on the Jesper Juul’s synthetic and widely
accepted definition of video games [7]. As a consequence, we can always choose a
moment when we decide whether the player succeeded or failed to get a specific
result. If we state a challenge as the objective to get a specific result, we can thus
always extract a set of challenges that any gameplay will propose to a player.

Measuring the difficulty of a gameplay can thus be stated as measuring the
difficulty of the challenges composing it. The currently widely adopted approach
is to calculate a score, based on a heuristic function mixing the different achie-
vements and failures of the player during the challenge. But as we can’t assert
the validity of the heuristic, this measure may be unreliable and give us a wrong
or distorted image of the difficulty. We thus propose that a challenge can only
be measured, and thus stated, in term of success or failure. The difficulty of a
challenge then becomes the probability the player has to fail at it. Talking about
success or failure leads to a more precise definition of what a challenge is, and
also leads to a reliable and out-of-context way to describe it’s difficulty.

Nevertheless, the probability of failing to overcome a challenge must still
be evaluated. To statistically evaluate a parameter, we need it to be constant.
However, the player’s level increases as he plays, and thus, his probability to lose
tends to decrease. Difficulty is thus always changing, and we must find a correct
approximation to evaluate it anyway. We propose to distinguish two kinds of
challenges, the core challenges and the composite challenges. Core challenges
are at the very basis of the gameplay. They are the basic mechanics the whole
gameplay is built with. Core challenges tend to be the most repetitive and short
ones we give to the player, like shooting a target in any FPS, or a kind of jump in
a platformer. The composite challenges are then built from the core ones. They
are special combinations of a set of core challenges. They tend to be longer and
unique. They often correspond to the objectives we clearly give to the player :
they are the visible surface of the gameplay’s machinery.

Thus, as core challenges are short and repetitive, we consider that the
player’s level won’t change that much before we get enough samples to make a
statistic evaluation of his failure probability. But for composite challenges, the
player’s level will change too much before we get enough results. To do so, we
must take many players, and evaluate the failure probability from the results we
got when they all had the same level. As we always can measure the core challen-
ges’ difficulty, and as they represent the very heart of the gameplay, we propose
to evaluate the player’s level from his probability to win the core challenges that
the composite challenge is made of. We can create a multi dimensional model
of the player’s level based on his observed performance on core challenges. In
this model, each ability of the player is measured using one of the gameplay’s
core challenge. In our experiment, we have chosen to simplify this player model,
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and to only take into account the most crucial ability for the current composite
challenge. We then evaluate the challenge’s difficulty from the result of players
showing the same level for this ability. The difficulty of a composite challenge c
can thus be defined as a conditional probability, for a given ability a.

D(a, c) = Probability{Lose(c)|Level(a, c)} (1)

For further explanations on the calculus of the difficulty equation, the reader
may refer to [13] or [2]. In the reminder of this paper, we refer to composite
challenges as challenges, and to core challenges as abilities.

Finding the abilities the player has to develop in order to get better at the
game, and thus play with a lower difficulty, can be a tough task. Indeed, it
demands a thorough understanding of the studied gameplay. In the following
example, we will study basic abilities, but we must keep in mind that one can
choose much more complex abilities. One may for example choose to describe a
specific play style such as sniping, or close range combat. Our contribution here is
to state what one must always try to respect when defining an ability. First, the
player’s behavior must always be as short as possible, so that we can observe this
behavior as many times as possible in a short period of time, while the player’s
level did not raise too much. Second, one must state a failure / success condition
for this behavior, in order to avoid any complex and unverifiable heuristic. Third,
one should always be able to determine whether the player is actually trying to
use this ability. If we see the player failing at something he wasn’t really trying
to do, we won’t learn anything valuable.

It is also to note that the way we propose to analyse a gameplay helps a
designer to find the best set of abilities. As we will describe in section 3.1, our
software use logs of ingame events to study the correlations between abilities
and challenges difficulty. When preparing for a playtest, the designer will have
in mind a set of abilities. However, the designer should always try to log any
event that seems important, even if unrelated to these abilities. That way, if
the chosen abilities are shown not to have any link with the game’s difficulty,
he may always modify them or look for more satisfying ones without running a
new playtest. The wider the set of logged event, the more the designer will be
able to explore his gameplay offline and find the good set of core challenges.

3 Case study

To test our measure of difficulty, we designed a short video game, using
a standard game engine and a basic and widely used kind of gameplay (Fig.
2). Our main objective was to determine if we were able to measure the main
player’s abilities, and to evaluate the challenges’ difficulty.

The game was developed using Unreal Development Kit. As the experiment
was supposed to be short, we designed a small level. We changed the AI so that
any automatic skill adjustment was removed and enemies only chased the player
and did not fight each other. We modified the standard gameplay of Unreal :
our gameplay releases waves after waves of enemies, and choose these waves to
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Figure 2 – Screen shot of the game.

match our a-priori difficulty curve. We tested the player’s abilities to aim right
and to keep moving. The core challenge aiming was won when a shot hit a
target, and the core challenge moving was lost when the player stayed at the
same place during a certain period of time.

The difficulty adjustment system of the game, responsible of driving the
experience along our difficulty curve, was not based on our measuring model.
We just played the game again and again, and evaluated the challenges as we
played them. Indeed, another way to evaluate our model is to compare our hypo-
thetical, subjectively evaluated difficulty to the evaluated one. After a tutorial
session, our difficulty slope was slowly growing and then oscillating between easy
challenges, and just-above-your-level challenges. Between challenges and after
a minimum time lapse, players were asked, for this last group of enemies, how
enjoyable and how hard the game was, both on five points Lickert scales (Fig.
3).

Figure 3 – Evaluation screen.
Translation :
During this last wave of enemies :
Did you enjoy playing :
not at all, a little, medium, a lot,
perfect !
Was the game easy :
very easy, easy, medium, somewhat
hard, very hard.

We designed 10 challenges, using the number of enemies and each enemy’s
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skills level to adjust the difficulty. The skills level of the enemy changes their
ability to aim precisely, to move fast, and to do tricky jumps to dodge the
player’s attacks. Figure 4 shows, for each challenge, the number of enemies and
their skill level, ranging from 0 to 5.

Challenge Nb of enemies Skill level
0 1 0
1 1 1
2 1 2
3 2 2
4 2 3
5 3 3
6 3 4
7 4 4
8 4 5
9 5 5
10 6 5

Figure 4 – List of challenges and their characteristics.

Difficulty is a relationship between a player and a challenge. It has no sense
to just talk about the difficulty of a challenge, but we can tell the difficulty of a
challenge with regard to a specific player. The Dynamic Difficulty Adjustment
(DDA) algorithm calculates the player’s level in two steps. First, we compute a
temporary level for the player. The player’s temporary level only changes in two
cases : if he wins a hard challenge or loses an easy one. More precisely, when a
player of level n loses an easy challenge, that is a challenge of level m ≤ n, we
give him the temporary level m − 1. If the player wins a hard challenge, that
is a challenge of level m ≥ n, we give him the temporary level m + 1. Second,
we compute the player’s level as the mean of the 5 last temporary levels. While
designing the game, we made hypothesises on what the difficulty would be when
assigning a specific challenge to a specific player. For example, we thought that if
we assigned a challenge more than two levels under the player’s level 1, then his
probability to loose wan only 0.05. Figure 5 summarizes our a-priori, theoretic
difficulty levels.

After a short tutorial, where the player was not able to lose and thus get
frustrated, the game start follows a specific difficulty slope. We designed two
difficulty slopes that the game may follow. Theses slopes are shown in figure
6. The experiment was 24 minutes long. During the first 12 minutes, the game
randomly chooses to follow one of the two difficulty slopes. It then switches to
the other one for the last 12 minutes.

In this paper, we report the results related to the following questions :

1. Is there indeed a link between measured abilities and the probability the
player has to lose a challenge : i.e. can we apply our constructive approach

1. for example challenge number 2 to a level 5 player
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Level difference Theoretic difficulty
< −2 0.95
−2 0.8
−1 0.6
0 0.5
1 0.4
2 0.2
> 2 0.05

Figure 5 – Theoretic difficulty of challenges.

Level differences corresponds to
the challenge’s level minus the
player’s level.

Figure 6 – Difficulty slopes.

to this experiment ?

2. Can we easily parametrize the relationship between measured abilities and
the outcome of a challenge : i.e. can we create a simple parametric model
of our difficulty function ?

3. Is there a strong relationship between our theoretical difficulty and our
measured difficulty : i.e. do the designer feel the difficulty the same way
we evaluate it ?

4. Is there a strong relationship between the difficulty reported by players
and our measured difficulty : i.e. do the players feel difficulty the same
way we evaluate it ?

The experiment was run in three sessions, with a total of 72 players, 56 men
and 16 women. Average age was 26 (σ = 6.5). The test was 24 minutes long, but
two players quit in the middle, and were removed from the experiment. We thus
analysed 70 players, for a total of 2368 attempts to win one of the 10 challenges
our game was able to propose.
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3.1 Tools

To record ingame events, we created a dynamic linked library in C++. Unreal
Development Kit allows to link any dll file, and to use the exported functions
with Unreal Script. We then created a logEvent function, which allows to add
an event to a XML file, with a time stamp. We did not use the standard ‘log()
function of UDK, as the log file is erased every time the engine is launched, and
as it’s also filled with UDK’s own messages. Using our own files let us record
every test in a separate file, and automatizes the experimentation. Two of the
three test sessions were supervised by students in Ergonomic, and they did not
have to manually manipulate the data files, just focusing on giving the first
basic instructions to the player.

Then, we interpreted our XML files with our custom software, which allows
us to define core and composite challenges, to calculate the player’s abilities,
and to calculate the first basic statistics. This software allows us to measure
the difficulty of the challenges, the linear correlations between abilities and
challenges difficulty, and to draw each game’s difficulty curve. We use specific
Lua code to calculate the player’s abilities from the recorded events. For further
analysis, the results were then exported as CVS files, and loaded into Excel with
XLStats plugin. Figure 7 shows a screen shot of our custom software.

Figure 7 – Screen shot of our difficulty calculus software.

4 Results

4.1 Abilities and challenge outcome

For both abilities, moving and aiming, the samples were not normally distri-
buted. Thus, we may not rely on parametric tests for the link between difficulty
and abilities. We thus studied correlations, and used χ2 independence tests. We
did not get enough data to study the very hard and very easy challenges, as they
were not played enough. We present the results of the 5 most played challenges.

According to these results, we chose the aiming ability as the most crucial
one. Correlations are very low, but χ2 tests show a strong relationship between
the ability to aim right and the challenge outcome. It is to note that the challenge
result is a binary variable, which cannot lead to high linear correlation. The
moving ability seems also important for 3 challenges on 5, but as stated before,
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Challenge Aiming(ρ) Moving (ρ)
2 -0,229** -0,084
3 -0.245** -0.277**
4 -0,215** -0,111
5 -0,307** -0,058**
6 -0,148* 0,080**

Figure 8 – Correlation between abilities and win/lost result per challenge
(Pearson).

Results are bolded when χ2 test
shows that results and abilities
are not independent (**p<0.01,
*p<0.05).

we chose as a first step to build a very simple model, based on only one ability
of the player.

The correlations presented in the previous figure (fig. 8) are not between abi-
lities and difficulty, but between abilities and the binary result of the challenge.
To get the relation between difficulty and abilities, we proceeded as explained in
section 2. We grouped players by level, and computed the challenge’s difficulty
for each of this class of level. Thus, we clustered the results into 10 different
classes, using the k-means algorithm with regard to the aiming ability. For each
class of the aiming ability, we computed the probability the player had to lose,
for each challenge. Figure 9 shows the linear correlation between the aiming
ability and difficulty that we obtained. Figure 10 details the linear regression
between each level for the aiming ability and the difficulty for the most played
challenge.

Challenge Aiming(ρ)
2 -0.675
3 -0.706
4 -0.757
5 -0.878
6 -0.563

Figure 9 – Correlation between Aiming and difficulty per challenge (Pearson).

These first results tend to show that, within the context of our gameplay, it
is possible to find core challenges that describe the player’s abilities. Moreover,
we can measure the player’s level for each ability, and these levels influence
the outcome of a composite challenge. For the most played challenges, χ2 test
shows that there exists a strong relationship between the aiming ability and
the challenge’s outcome. For some of them, challenge 3, 5 and 6, there is also a
strong relationship between the capacity to move and the challenge’s outcome.
The linear correlations show that we may try to approximate this relationship
using a simple linear function.
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Figure 10 – Linear regression between aiming and difficulty for challenge 4
(most played one).

4.2 Linear approximation

The previous sections show that there exist a link between our measured
abilities and the difficulty of the game. If we can parametrize this relationship,
then we may be able to evaluate the difficulty of a challenge during the game,
only by observing the player’s abilities.

We chose to approximate our difficulty function using a simple linear model,
with only one ability. The previous sections shows that the aiming ability may
be a very good start for our model. We thus based our model on the aiming
ability, and built it using the least squares method.

To investigate the precision of our linear model, we evaluated it’s ability to
generalize on new data. We calculated the relationships between abilities and
difficulty using a certain amount of data, and tested, on new datas, how far our
prediction was from the measured difficulty. We did not run further experiments,
but just built the model using 75% of the data and then tested the precision of
the predictions on the remaining 25% of the datas.

We classified the test data into 15 classes using the k-means algorithm, based
on the aiming ability. We were then able to compute the measured and predicted
difficulty for each one of these classes. Figure 11 shows the linear regression
between the predicted and measured difficulty, on the 25% of datas we used for
testing. The linear correlation is only −0.64, and our model seems to be less
precise for low difficulty values.

We computed the model’s error as the difference between predicted and
measured values, depicted in figure 12. For the absolute error e, e = 0.07 and
σ = 0.064.

Figure 12 results clearly show that our model is overestimating easy chal-
lenges. When the challenge’s difficulty is around 0.3, that is, when we actually
measured that 30% of the players failed at it, the model predicts difficulties
between 0.35 and 0.5. The prediction is more accurate for higher difficulty le-
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Figure 11 – Predicted and measured difficulty.

Figure 12 – Prediction error for each measured difficulty.

vels. When the challenge’s measured difficulty is higher than 0.35, the prediction
stays under a 10% error. We will further discuss these results in section 5 .

4.3 Theoretical and predicted difficulty

We then tested the link between theoretical and predicted difficulty. Before
the tests, we roughly estimated the difficulty from our experience of the game,
and made specific choices when designing the DDA algorithm. Especially, we
chose to evaluate the player by using the specific algorithm described in section
3, which may not be accurate.

The result tends to show that our theoretical difficulty was not that wrong.
We computed the prediction error as the difference between theoretical difficulty
and predicted difficulty. For the absolute error e, e = 0.17 and σ = 0.13. χ2 tests
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show a strong relationship between theoretic and measured difficulty (p < 10−4).
We found a positive linear correlation of 0.61 between them, but it’s important
to point out that linear correlation is here biaised by the fact that theoretical
evaluation is on an ordinal scale, not a real quantitative variable. We can look
closer at the spread of the predicted difficulties, for each theoretical difficulty
level. Figure 13 shows the scattergrams of the measured difficulty, for each
theoretic difficulty level.

Figure 13 – Predicted difficulty scattergrams, for each theoretic difficulty level.

This results are also coherent with results of section 4.2. We previously
showed that our model was less accurate, in this experiment, when predicting low
difficulty levels. This tends to be confirmed by these results. For low theoretical
difficulties, the distributions are much wider than for higher difficulty levels.
More precisely, when we hypothesized that the player had a probability of 0.2
or 0.4, the model predictions were the most widely spread.

4.4 Reported and predicted difficulty

During the test, players were asked to evaluate the difficulty of the last
challenge they played, on a 5 point Lickert scale. When the player rated the
challenge as very easy, we valued it 0.1, and added 0.2 for each step of the
scale, keeping it linear. Thus, when the player rated a medium difficulty, we
recorded a 0.5 difficulty value. As another example, we recorded 0.9 for a very
hard reported difficulty.

We computed the prediction error as the difference between reported diffi-
culty and predicted difficulty. For the absolute error e, e = 0.21 and σ = 0.17.
We only found a 0.32 linear correlation between measured and reported diffi-
culty, but χ2 test showed a strong link between them (p < 0.01), and linear
correlation is biaised by the fact that our evaluation is on an a single ordinal
scale, not a real quantitative variable. Figure 14 shows measured difficulty scat-
tergrams, for each reported difficulty level. Again, it seems that the easier the
challenge is, the wider the distribution is.

13



Figure 14 – Predicted difficulty scattergrams, for each reported difficulty level.

5 Discussion

First, our results show that for our game, a FPS based on successive waves
of enemies implemented on a widely used game engine, one can show the link
between the player abilities and his probability to lose. Within this experiment,
we were actually able to split the gameplay into core challenges, and to measure
some of the player’s abilities based on these core challenges. Moreover, we showed
that there existed indeed a relationship between abilities and the challenge’s
difficulty. These first results do not show that what we measure is the game’s
difficulty, but that our methodology can be applied in a standard gameplay, and
that as we supposed, there existed a link between what we call player abilities
and the probability the player has to lose.

Then, we tried to parametrize this link, that is, the function that gives a
player’s probability to lose based on one of his abilities. We have built a simple
model of this function, using a linear regression. We tested it on 25% of the data
to evaluate it’s accuracy. In our case study, this simple linear approximation
was found to be relatively accurate. The mean absolute error is e = 0.07 with
σ = 0.064. When looking closer at it, we found out that it was less precise for
the easiest challenges than for the tough ones. These results shows that with
a very simple model, and in the context of our experiment, we can get a fair
estimate of the player’s probability to lose : it may certainly be useful for a
game designer to know the probability a certain player will have to lose, plus
or minus 0.07. Moreover, we may reach a higher accuracy with a more complex
model, taking into account the whole set of player abilities.

The lack of accuracy may also be explained by our population. In order to
have a large amount of testers, we took whoever wanted to play. As a conse-
quence, we had two kinds of easy challenges. It is not the same to give an easy
challenge to a good player, than to give a very easy challenge to a bad player.
During the tests, we had players who had never played a FPS before, and their
behaviour were mostly erratic. The result of the challenge was thus much more
random than for skilled players, and as they kept loosing, we kept giving them
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easier and easier challenges, down to the point where we could not go easier.
We should run another experiment, targeting a more homogeneous population.

We then tried to test if the probability the player had to lose was actually
related to the game’s difficulty. We tested it in two ways. First, we compared
our predicted difficulty with the theoretical difficulty we had hypothesized when
coding our DDA algorithm. In this algorithm, we did not evaluate the player’s
level from his abilities, but from using the result obtained on the previous chal-
lenges. We ranked challenges from the easiest one to the most difficult one, and
chose hypothetical difficulty values based on the difference between the cur-
rent challenge’s rank and his previous won/lost challenges. χ2 testing showed
a strong link, with a 0.61 linear correlation. The mean absolute error between
hypothesized and predicted difficulty was e = 0.17 with σ = 0.13. We also found
out that when looking closer at scattergrams, our prediction was still less accu-
rate for the theoretically easiest challenges. This is coherent with the previous
findings, that shows that our linear model is less accurate with easy challenges.

This results shows that our theoretical and predicted difficulty are linked,
and that we may actually be measuring the game’s difficulty. Of course, it’s hard
to tell which one of both variables is the less accurate. We may argue that our
prediction model is precise and our theoretical value is just a rough estimate, but
also that we as designers know our game’s difficulty and thus that our prediction
is not accurate enough. But both theoretical and predicted difficulties are still
relatively close to each other, especially for hard challenges, which leads to think
that we are actually giving an estimate of the game’s difficulty.

As a second way to determine whether we were actually predicting some-
thing related to the actual difficulty of the game, we compared our predicted
difficulty with the difficulty as experienced by players. χ2 test still show a strong
relationship, but correlation is very low (0.32) and the mean absolute error was
bigger : e = 0.21 with σ = 0.17. We still have wider spread distributions for the
easiest challenges.

Reported difficulty is a very important one : what the player is thinking
is fundamental, because we try to motivate the player by proposing the best
difficulty curve. This is also where we get the less accurate results. Just looking
at the mean error, we can see that when we predict a difficulty, the player may
tell that it’s 0.21 points harder or 0.21 easier.

First, we may explain this lack of accuracy is partly due to the fact that
we only assess difficulty on a single 5 points Lickert scale. Indeed, we thought
that it was not possible to ask about the game difficulty after the game, because
the player may never remember the whole list of challenges he played during 24
minutes. Thus, we had to ask him about difficulty at the end of each challenge.
As we did not want to disturb him too much, we only asked one question about
difficulty. The first thing to do would be to design another way to get the player’s
feeling of difficulty, in a more accurate but still non intrusive way.

Nevertheless, these results may be explained by the fact that the players
do not only assess difficulty by estimating their short term chances of success.
The first thing that stroke us during debriefing sessions was that the players
sometimes evaluate difficulty in a very strange way. For example, some players
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kept being motivated after many failures, and even reported a low difficulty
level. They then explained us that it was not that the game was hard, but that
they just were bad players, and had to improve their level. They indeed rated
hard games as easy one, based on that perception of the game’s difficulty. This
leads us to think that the subjective assessment of a challenge difficulty is more
complex than just guessing their short term chances of success. Players perceive
their own abilities, but also estimate what these abilities will become if they
practice. They take this more complex model into account when they assess the
game’s difficulty and our model does not.

6 Perspectives

In this paper, we propose a method to measure the difficulty of a gameplay,
and thus of the challenges composing it. We considered challenges as a pre-
defined game context, where the player tries to reach a certain goal. If the game
context changes, then it’s a different challenge, which need a new evaluation.
For example, if the player has to kill a monster, any modification of this monster
speed, life or armor points makes a different challenge.

Instead of having to evaluate again the difficulty of any new challenge, we
would like to have a model able to infer this new difficulty. In our current
model, we only generalize on new players. That is, players are defined by a set
of parameters (i.e. abilities), and by using a big enough sample of players, we
make a sufficiently robust model to infer the difficulty of any new player, with
a certain accuracy, evaluated in section 4.2. We may also define challenges of
the same kind by a set of parameters, like for instance, in the previous example,
the monster speed, life and armor points. By testing a sufficient amount of
challenges, we may also be able to generalize on new challenges. This would
be particularly useful if the game uses a DDA algorithm, and thus add small
dynamic variations to the context of a given challenge.

Then, the next step of our research will be to test a more complex approxi-
mation of our model and see if we gain in accuracy. Also, we need to investigate
the player’s subjective evaluation of difficulty and see how we can modify our
model to better predict the player’s feeling of difficulty. Furthermore, we will
need to evaluate many different kinds of gameplay, and explore the link between
engagement and difficulty.

7 Conclusion

Studies in psychology and game design theory show that difficulty is a core
issue of game design. We have proposed a method to analyse a gameplay, split-
ting it into abilities and challenges, to construct a reliable and generic measure
of a game’s difficulty. This model does not explain the game’s difficulty like
a cognitive model would. It takes a game design’s constructive approach, and
tries to evaluate the player’s chances of success. Our measure takes the player’s
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learning into account, and allows to evaluate the difficulty from a statistical
approach. We then tested our model during an experiment based on a gene-
ric FPS gameplay using a widely used commercial engine. We built a linear
approximation of our model. This simple approximation was found to be rela-
tively accurate, with a mean absolute error e = 0.07 (σ = 0.064). The last part
of our study shows that the subjective feeling of difficulty is complex and not
only linked with the outcome of the challenge.
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